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Abstract
We discuss the structure of particle and spin-diffusion equations for
semiconductor heterostructures with linear Rashba spin–orbit interaction and
long-range impurity scattering. We focus on systems in which the correlation
length of the impurity potential is large compared to the wavelength of the
particles but small compared to the mean free path. We show that the transport
coefficients for such systems are affected differently by the anisotropy of
scattering events. Whereas the relaxation times are replaced by momentum
relaxation times in transport coefficients coupling spin and spin or charge
and charge they are replaced by products of the momentum relaxation time
and the scattering time in spin–charge coupling coefficients. This fact leads
to a reduction of the magnitude of the spin-accumulation in high-mobility
heterostructures in the presence of electric fields.

1. Introduction

Investigations of the impact of the spin–orbit interaction on the spin and charge transport
properties of non-magnetic semiconductor heterostructures are of much current interest. In
particular the Rashba interaction has received much attention. The Rashba interaction
is the conventional spin–orbit interaction with a constant perpendicular electric field in a
two-dimensional electron gas. There have been discussions in the literature of a number
of interesting effects associated with this interaction which permit complete electric spin-
manipulation, like the spin-accumulation in an external electric field (see, e.g., [1–6]), spin-
galvanic currents [7, 8], electric field-induced precessions [9–14] or the spin-Hall effect (see,
e.g., [15–19]). Many of these effects have also been observed in experiments.

The theoretical description of spin transport processes in semiconductor heterostructures
with the Rashba interaction requires the derivation of diffusion equations. Such equations have
been derived in a number of papers (see, e.g., [9, 11, 20–22]). The scattering of particles
at impurities has been considered as isotropic in all of them. However, this condition is not
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satisfied in most semiconductor heterostructures. The scattering is often dominated by ionized
impurities in such systems, in particular in heterostructures with remote doping layers. This
raises the question of how anisotropic scattering events manifest themselves in spin-diffusion
equations.

Charge transport phenomena are characterized by two relaxation times in the presence of
anisotropic scattering events, by the scattering time and the momentum relaxation time. The
scattering time characterizes the relaxation of the distribution function. It contains all scattering
events. The momentum relaxation time takes into account only those events which also relax
momentum. Forward scattering events are not contained in the momentum relaxation time.
Therefore, the momentum relaxation time is longer than the scattering time.

Spin–charge coupling effects often result from the interplay between both mechanisms.
The spin-accumulation in an external field, for example, is determined by the interplay between
spin generation and decay of magnetization. Spin generation results from the tendency to
restore the properties of the spectrum after scattering events. The characteristic property
restored is that the spin of the particles is transverse to their momentum. All scattering events
give rise to deviations from this property, not only those which relax momentum. Therefore, the
system can be well in equilibrium (or in a stationary state) with respect to spin without being
in equilibrium (or in a stationary state) with respect to momentum. This fact suggests that
spin generation is related to the scattering time. The decay of the magnetization, on the other
hand, is determined by the Dyakonov–Perel mechanism [23], and thus is coupled to momentum
relaxation. Thus, it is conceivable that both relaxation times appear in spin–charge coupling
terms.

It is the purpose of the present paper to check whether signatures of the scattering time
are also reflected in spin–charge coupling terms or not. To this end we consider a system
with a linear Rashba interaction and scattering by a disordered potential. We focus on the low
temperature regime, where scattering by phonons is suppressed (see section 2.6. of [24] for a
discussion of the temperature range in question). We assume that the correlation length of the
disorder potential is large compared to the wavelength of the particles but small compared to
the mean free path, and take into account only one feature of the long-range scattering potential
to simplify the calculation, the anisotropy in scattering events. The anisotropy, however, is
treated exactly. Using this approximation we derive particle and spin-diffusion equations for
such systems and investigate the structure of the spin-Hall current.

2. Basic equations

We consider a two-dimensional electron gas with Rashba spin–orbit interaction. The Hamilton
operator has the form

H =
∑

αα′

∫
dk

(2π)2
(εkδαα′ − (σ αα′ ,N × h̄k))a†

kαakα′

+
∑

α

∫
dk

(2π)2

dk′

(2π)2
v(k − k′)a†

kαak′α. (1)

Here εk = h̄2k2/(2m) is the kinetic energy of the particles in the absence of the spin–orbit
interaction, N = Nez is a vector perpendicular to the electron gas, (. . . , . . .) symbolizes
the scalar product and a†

kα and akα are creation and annihilation operators for particles with
momentum h̄k and spin α. The potential v is a disordered potential with zero average and
Gaussian statistics. Its standard deviation is given by

〈v(k)v(k′)〉c = (2π)2δ(k + k′)B(k), (2)
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where 〈· · ·〉c symbolizes the configuration average and B(k) is a slowly varying function of k.
We assume that the disordered potential is of long range in the sense that its correlation length
ξ is large compared to the wavelength of the particles but small compared to the mean free
path, so the Born approximation is still applicable. The scattering time τ0 is given by

1

τ0(εk)
= 2π

h̄

∫
dk1

(2π)2
B(k − k1)δ(εk − εk1 ) (3)

in this approximation and the momentum relaxation time is given by

1

τtr(εk)
= 2π

h̄

∫
dk1

(2π)2
B(k − k1)δ(εk − εk1 )(1 − cos(φ)), (4)

where φ is the scattering angle [25, 26]. The description is appropriate for high-mobility
heterostructures, in which remote impurity scattering is the main source for the momentum
relaxation [26]. For simplicity’s sake, we assume that the impurities are separated from the
electron gas by a spacer of width z0 due to δ-doping. The statistics of the impurity potential
is nearly Gaussian in such systems [26] and the correlation length is given by the relationship
ξ = z0/2.

3. The Green’s functions

The propagation of single particle excitations is described by the retarded and advanced Green’s
functions. They satisfy the Dyson equation

[(E − εk)δαα1 + h̄(σ αα1 ,N × k) − �R/A
αα1

(k|E)]GR/A
α1α

′(k|E) = δαα′ , (5)

where �R/A is the retarded (advanced) self-energy. A summation with respect to double indices
has to be performed in equation (5) and also in the equations below. The self-energy is given
by

�R
αα′ (k|E) =

∫
dq

(2π)2
B(k − q)GR/A

αα′ (q|E). (6)

In calculating the self-energy we restrict the consideration to its imaginary part. In this case we
can take advantage of the fact that the imaginary part of the Green’s function is strongly peaked
at E = εq . The width of the peak is of the order of the disorder energy h̄/2τ0. The Rashba
interaction does not affect this property since we consider only the limit of the weak Rashba
interaction, in which the disorder energy is large compared to the Rashba level splitting. The
width of the function B is determined by the correlation length ξ . Thus, the peak of the Green’s
function determines the integral if h̄/2τ0 � h̄2/2mξ 2. This situation is not uncommon and can
always be achieved by choosing the heterostructures properly. Accordingly, we can replace
the vector q in equation (6) by q = kEeq , where E = h̄2k2

E/2m. To simplify the self-energy
further we use again the fact that the Green’s function is strongly peaked at E = εk . Using this
fact we also replace εk by E in the imaginary part of the self-energy. The self-energy depends
only on ek and E in this approximation, i.e. �R/A(k|E) → �R/A(ek |E). We note, that this
approximation scheme has been used many times before in similar situations (see, e.g., [27]
and [28] and references therein).

Our arguments have led us to a self-energy, which depends only on ek . However, the
self-energy is not the only quantity which is simplified. In this approximation the function
B(k − q) is effectively replaced by a function which depends only on E and on the scattering
angle, namely B(k − q) → B((ek, eq)|E). The dependence on the scattering angle takes into
account the anisotropy in scattering events. Below, we restrict the consideration to systems
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with weak anisotropy. In this case we can expand B with respect to the scattering angle and
obtain

B(k − q) → B((ek, eq)|E) = h̄

2πντ0(E)
+ h̄

2πντ1(E)
(ek, eq), (7)

where

h̄

2πντ1(E)
= 1

π

∫ 2π

0
dφ B((ek, eq)|E). (8)

The quantity τ1 is connected with the momentum relaxation time τtr by the relationship

1

τtr
= 1

τ0
− 1

2τ1
. (9)

Using equation (7) we eventually obtain

�R
αα′ (ek |E) = −i

h̄

2τ0(E)
δαα′ − i

h̄

8τ1(E)

√
2m

E
(σ αα′ × N , ek). (10)

The advanced self-energy is obtained from equation (10) by Hermitian conjugation.
The calculations yield a non-trivial self-energy for systems with anisotropic scattering,

which differs from that for systems with isotropic scattering. In contrast to systems with
isotropic scattering the self-energy depends also on the momentum relaxation time, if
anisotropic scattering events occur. At a first glance one is inclined to drop the new term
in the self-energy, since it is proportional to the Rashba interaction strength and to E−1/2.
However, it turns out that this neglect is not justified, since it leads to violation of particle
number conservation and to divergences in the solution to the diffusion equations, which occur
in the limit of the weak Rashba interaction. Therefore, it is necessary to keep this term. The
retarded Green’s function has the form

GR
αα′ (k|E) = gR

+(k|E)gR
−(k|E)

(
g−1

R (k|E)δαα′ − h̄

(
σ αα′ × N ,k + i

1

8τ1

√
2m

E
ek

))
(11)

in this case, where

gR
±(k|E) = E − εk ± 
R(k|E) + i

h̄

2τ0
, (12)

gR(k|E) = gR+(k|E)|N=0 and


R(k|E) = h̄|N |
(

k + i
1

8τ1

√
2m

E

)
. (13)

4. The diffusion equation

To derive the diffusion equation we use the Keldysh formalism [29]. The magnetization is
calculated from the function

G<
αα′ (k, κ |E, s) = i

h̄

∫ ∞

0
dt dt ′ei((E/h̄+is)t−Et ′/h̄)〈a†

k−κ/2α′(t ′)ak+κ/2α(t)〉 (14)

in this formalism. Here the bracket 〈· · ·〉 indicates the average with respect to the initial state
and s is the Laplace frequency governing the evolution of the particle and spin densities. (To
obtain functions at the same instant of time we integrate equation (14) with respect to E and
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perform an inverse Laplace transformation with respect to s.) The equation of motion for this
quantity can be written in the form [29]

G<
αα′ (k, κ |E, s) − GR

αα1

(
k + κ

2

∣∣∣∣E + ih̄s

)
GA

α2α′

(
k − κ

2

∣∣∣∣E

)
�<

α1α2
(k, κ |E, s)

= GR
αα1

(
k + κ

2

∣∣∣∣E + ih̄s

)
GA

α2α
′

(
k − κ

2

∣∣∣∣E

)
G<

α1α2
(k, κ), (15)

where

�<
αα′ (k, κ |E, s) =

∫
dk1

(2π)2
B(k − k1)G<

αα′ (k1, κ |E, s) (16)

is the ‘lesser’ part of the self-energy and G<
αα′(k, κ) = i〈a†

k−κ/2 α′(0)ak+κ/2 α(0)〉 is the initial
condition.

We are interested in small frequencies (sτtr � 1) and small wavevectors κ = k − k′ in
investigating these equations. Therefore, we focus on the limit s → 0, κ → 0. The right-
hand side (rhs) of equation (15) is finite in this limit. There the frequency s competes with the
scattering frequency 1/τ0. Consequently, we can take the limit s → 0 on the rhs and obtain

G<
αα′ (k, κ |E, s) − GR

αα1

(
k + κ

2

∣∣∣∣E + ih̄s

)
GA

α2α
′

(
k − κ

2

∣∣∣∣E

)
�<

α1α2
(k, κ |E, s)

= G<
0 αα′(k, κ |E). (17)

The quantity

G<
0 αα′(k, κ |E) = GR

αα1

(
k + κ

2

∣∣∣∣E

)
GA

α2α
′

(
k − κ

2

∣∣∣∣E

)
G<

α1α2(k, κ). (18)

in this equation is considered as a new initial condition.
Equation (17) yields a convenient starting point for the derivation of diffusion equations.

To derive diffusion equations we introduce the distribution functions

fαα′ (κ |E, s) = −ih̄
∫

dk

(2π)
G<

αα′ (k, κ |E, s) (19)

and

fαα′ (κ |E, s) = −ih̄
∫

dk

(2π)
ekG<

αα′ (k, κ |E, s), (20)

where ek = k/k is the unit vector in the direction of k. The particle density n(κ |E, s) and the
spin density S(κ |E, s) are related to these quantities by the relationships

n(κ |E, s) = fαα(κ |E, s) S(κ |E, s) = σ αα′ fα′α(κ|E, s). (21)

To obtain an equation for the quantity fαα′ we integrate equation (17) with respect to k and use
equation (7). This yields the equation
[
δαα1 δα′α2 − h̄

2πντ0
I αα1
α′α2

(κ |E, s)

]
fα1α2 − h̄

2πντ1
(Jαα1

α′α2
(κ|E, s),fα1α2) = τ0 f0αα′ , (22)

where

τ0 f0αα′ (κ |E) = −ih̄
∫

dk

(2π)
G<

0 αα′(k, κ |E) (23)

is the image of the initial condition,

I αα1
α′α2

(κ|E, s) =
∫

dk

(2π)2
GR

αα1

(
k + κ

2

∣∣∣∣E + ih̄s

)
GA

α2α
′

(
k − κ

2

∣∣∣∣E

)
(24)
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and

Jαα1
α′α2

(κ |E, s) =
∫

dk

(2π)2
ekGR

αα1

(
k + κ

2

∣∣∣∣E + ih̄s

)
GA

α2α′

(
k − κ

2

∣∣∣∣E

)
. (25)

The dependence of the distribution functions on the variables κ, E and s has been suppressed
in equation (22) to avoid cluttering the notation. Since equation (22) is not closed we also need
an equation for the function fαα′ . To obtain such an equation we first multiply equation (17) by
ek and integrate the resulting equation with respect to k thereafter. Doing so, we obtain
[
δαα1 δα′α1δi j − h̄

2πντ1
Ki j

αα1
α′α2

(κ |E, s)

]
f j α1α2

− h̄

2πντ0
Jαα1

α′α2
fα1α2 = τ0f0αα′ , (26)

where

K αα1
α′α2

(κ |E, s) =
∫

dk

(2π)2
ek ⊗ ekGR

αα1

(
k + κ

2

∣∣∣∣E + ih̄s

)
GA

α2α
′

(
k − κ

2

∣∣∣∣E

)
(27)

and

τ0f0αα′ (κ|E) = −ih̄
∫

dk

(2π)
ekG<

0 αα′ (k, κ |E). (28)

is the initial condition. In deriving the diffusion equation we replace the quantity (28) by zero,
since knowledge of the initial condition is lost after a time of the order of the transport time.

The equations (22) and (26) yield a closed set of algebraic equations for the calculation
of the distribution function fαα′ . To simplify them we use the fact that we are interested in
dirty systems with a weak Rashba spin–orbit interaction. Moreover, we focus on variations
of the densities on length scales large compared to the mean free path l (lκ � 1) and
restrict the consideration to timescales which are large compared to the momentum relaxation
time (sτtr � 1). In this case we can use the diffusion approximation to simplify our
equations [37, 38]. In line with this approximation we expand the quantities I αα1

α′α2
, J

αα1
α′α2

and
K αα1

α′α2
with respect to κ and s. Doing so, we only take into account expansion coefficients, which

yield at most contributions of second order in κ and of first order in s (see [38] for a discussion
of this approximation). Thereafter, we expand the coefficients with respect to N . The latter
expansion is motivated by the fact that the Rashba interaction is weak and controlled by the
parameter |
|/(h̄/2τ0) � 1, where |
| is the Rashba level splitting. The calculation of the
coefficients on the basis of the quantities I αα1

α′α2
, Jαα1

α′α2
and K αα1

α′α2
is elementary but rather lengthy

and therefore not presented here. Using this approximation we calculate the function fαα′ and
insert the result into equation (22). This procedure yields the following diffusion equations after
an inverse Laplace transformation with respect to s and a Fourier transformation with respect
to κ

∂t n − D
n + τ0(∇,S × N) = 0, (29)

∂tS − D
S − ωs(N × ∇) × S + Ω · (S − S0) = 0, (30)

S0 = −τ0N × ∇n. (31)

The transport coefficients in these equations are given by

D = Eτtr

m
, ωs = 4

m

h̄
D,  = 4

N2m2

h̄2
D, Ωik = δik(1 + δi3). (32)

We have ignored a term proportional to N2∇x∇y in the spin-diffusion equations, although it
has a symmetry which differs from that of the terms kept. However, the term ignored is only
important in applications far from equilibrium with special boundary conditions, which are
outside the scope of our paper.
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The equations (29) and (30) have nearly the same form as for systems with short-range
scattering [20–22, 30]. The main difference is that the scattering time is replaced by the
momentum relaxation time in all transport coefficients except those coupling spin and charge.
The spin-accumulation (31) is determined by the scattering time, and not by the momentum
relaxation time. The spin-galvanic current, which occurs in the third term on the left-hand side
of equation (29), is determined by the coefficient τ0 and thus is also related to the scattering
time.

We would like to mention that our result for the spin accumulation differs from that of [3].
It would be interesting to compare both calculations. However, it is impossible to do so.
The authors of [3] discuss neither the statistical correlations they take into account in their
calculation nor the range of their impurity correlation function, the structure of their Green’s
function or any other step of their calculation. They argue that the characteristic timescale in
the spin accumulation is the transport time and refer to the book [31] for the calculation, which,
however, is restricted to spinless particles. Our results are also in line with those derived in [31].

The result that the characteristic time in the spin-accumulation is the scattering time is
unexpected. Most transport coefficients are determined by the transport time in systems with
long-range scattering. One would like to compare the results of the diffusion approximation
with an independent calculation in view of this fact. In the appendix we present such a
calculation, which has been performed within the framework of the Kubo formula. The results,
however, are completely in line with those from the diffusion equation.

5. The spin-Hall current

To calculate the spin-Hall current we extend the method of [21] and [32] to systems with long-
range scattering. To this end we focus on systems with concentration gradients and use the
expression

Ĵiz = 1
2 {v̂i , σz} (33)

for the spin-Hall current operator. Here v̂i is the i th-component of the velocity operator.
Although it is not clear, how the expectation value of the spin-current operator is related to the
spin-accumulation in a spin-Hall experiment we expect that a non-vanishing spin-Hall effect
in dirty systems only exists in systems with non-vanishing spin-Hall current, since particles
running in opposite directions have their spin aligned in opposite z-directions only in such
systems. How the spin-Hall current should be measured has recently been discussed in [33, 34].

For the calculation of the spin-Hall current we use the ladder approximation. The
expression for the spin-Hall current takes the form

〈 Ĵiz〉 = −ih̄
∫

dki

(2π)2

h̄k

m
σ z

α′αGR
αα1

(
k + κ

2

∣∣∣∣E

)
GA

α2α
′

(
k − κ

2

∣∣∣∣E

)
�<

α1α2
(k, κ |E, s) (34)

for large times in this approximation. In investigating this expression we restrict the
consideration to the hydrodynamic limit, namely we expand the Green’s function with respect
to κ and retain only contributions which are at most linear in κ . In calculating the self-energy
we use the approximation (7). Due to this fact we can again express the self-energy by the
functions fαα′ and fαα′ and the quantity fαα′ by the function fαα′ by means of equation (26).
Using this procedure we obtain after a Fourier transformation

〈Jiz〉 = −D∇i Sz + 1
2ωs N[(Sx − S0 x) + (Sy − S0 y)]. (35)

If we apply a concentration gradient to a homogeneous system, say in the x-direction, we obtain
∇y → 0, Sx = S0 x = 0 and Sy = S0 y in the steady state. Consequently, the spin-Hall current
vanishes in the steady state, as expected. The result is in line with the general arguments of
the [35] and [36].



6244 O Bleibaum

6. Conclusions

In this paper we have derived a coupled system of particle and spin-diffusion equations for
systems with long-range impurity scattering. We have focused on systems in which the
correlation length of the impurity potential is large compared to the wavelength of the particles
but small compared to the mean free path. Such systems have the property that they can still be
described by means of the conventional Born approximation.

Our investigations have shown that the structure of the diffusion equations is not affected
by anisotropy in scattering events in a finite-range impurity potential. The diffusion equations
have literally the same structure as for systems with short-range impurity scattering (see,
e.g., [20–22, 30]). The scattering time, however, is replaced by the momentum relaxation
time in some of the transport coefficients. This replacement affects the diffusion coefficients,
the decay rates and the frequency ωs , which governs the precession of an inhomogeneous
magnetization due to the Rashba spin–orbit coupling. Therefore, the spin–spin coupling
coefficients and charge–charge coupling coefficients renormalize in the same way as the
conductivity. The spin–charge coupling coefficients, however, are affected differently. Our
calculation shows that the spin-accumulation due to an electric field is not determined by the
momentum relaxation time τtr but by the scattering time τ0. This fact manifests itself also in
the spin-galvanic current, which proves to be proportional to τ0τtr.

Most estimates for the magnitude of the spin-accumulation in the literature are based on
formulae which have been derived for systems with short-range scattering. The momentum
relaxation time agrees with the scattering time in such systems. However, we expect that the
spin-accumulation is smaller than previously assumed since the momentum relaxation time is
much larger than the scattering time. The difference can be particularly large in high-mobility
heterostructures with remote impurity scattering, in which the scatterers are separated from the
2D electron gas by a spacer of width z0. The momentum relaxation time is given by

1

τtr
= ν

∫ π

0
dθ

∫
d z|χ(z)|2 exp(−4kF|z0 − z| sin(θ/2))

(2kF sin(θ/2) + qsc)2
(1 − cos(θ)) (36)

in such systems [39], where ν is a frequency, h̄kF is the momentum at the Fermi surface,
qsc describes the screening and χ(z) is the envelope function of the quasi two-dimensional
electron gas. The equation for τ0 differs from equation (36) only in that the factor (1 − cos(θ))

is absent. This factor is important for high particle densities since the exponent favours small-
angle scattering in this case. However, unfortunately it is impossible to obtain a universal
numerical estimate for the ratio of the relaxation times since the expression (36) also depends
on χ(z). The integral (36) is very sensitive to the tails of the envelope function, although
the tails decay strongly outside the active layer [39]. Therefore, the mobility can be changed
considerably by changing their shape. This fact is taken advantage of in velocity-modulated
transistors today [39]. Thus, the impact of the tails on the magnitude of the relaxation time is
really strong. However, if we take the radical point of view and replace the function |χ(z)|2 by
δ(z) we find that this ratio is at most of the order of

τtr

τ0
∼ (2kFz0)

2 = 8πnz2
0, (37)

where n is the particle density. Equation (37) yields 56 for n = 1012 cm−2 and z0 = 150 Å.
Thus, the fact that the spin-accumulation is determined by the transport time can lead to
strong reductions of the magnitude of the spin-accumulation. We would like to mention that a
reduction by a factor of 4 has been observed in [5]. Our results might yield an explanation for
this.

Finally we would like to draw attention to the fact that anisotropic scattering events also
occur in systems in which electron–electron collisions and piezoelectric scattering events are
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important. A recent investigation of the impact of electron–electron collisions on the spin
relaxation rate  indicates that such collisions affect the spin relaxation rate in the same way
as collisions with impurities [40]. The results on spin relaxation of [40] agree with those of the
present paper. Thus, it might also be possible to observe a reduction of the magnitude of the
spin-accumulation in such systems.

Appendix. Spin-accumulation in the Kubo formalism

Here we give an alternative derivation for the spin-accumulation. To calculate the spin-
accumulation in a weak electric field we assume that the field Ex is applied in the x-direction.
A non-equilibrium magnetization in the y-direction is obtained in this case [1, 2]. The
magnetization is given by the equation [1, 2]

Sy = eh̄Ex

2π

∫
dk

(2π)2

(
h̄kx

m
Py0(k) − N Pyy(k)

)
(A.1)

in the Kubo formulation, where

V Pαβ(k) = 1

2

∫
dk′

(2π)2
tr〈σαGR(k′,k|E)σβ GA(k,k′ |E)〉c, (A.2)

V is the volume of the system and e is the charge. The Green’s functions in equation (A.2) are
those not averaged with respect to disorder. The quantity Pαβ(k) satisfies the Bethe–Salpeter
equation

Pαβ(k) = P0αβ(k) +
∫

dk1

(2π)2
Pαγ (k1)B(k1 − k)P0γβ(k), (A.3)

where

P0αβ(k) = 1
2 tr(σαGR(k|E)σβ GA(k|E)). (A.4)

To simplify this equation we use again equation (7). Doing so, we find that the solution to
equation (A.3) takes the form

Pαβ(k) = P0αβ(k) + h̄

2πντ0
Pαγ P0γβ(k) + h̄

2πντ1
(Pαγ , ek)P0γβ(k), (A.5)

where

Pαβ =
∫

dk

(2π)2
Pαβ(k), Pαβ =

∫
dk

(2π)2
ek Pαβ(k). (A.6)

The quantities Pαβ and Pαβ satisfy the coupled system of algebraic equations

Pκλ − h̄

2πντ0
Pκη P0ηλ − h̄

2πντ1
(Pκη,P0ηλ

) = P0κλ, (A.7)

Pκλ − h̄

2πντ0
PκηP0ηλ − h̄

2πντ1
(Pκη,Kηλ) = P0κλ. (A.8)

The quantities P0κλ and P0κλ are given by equation (A.6) with P(k) replaced by P0(k) and

Kαβ =
∫

dk

(2π)2
ek ⊗ ek P0αβ(k). (A.9)

To solve this system of equations we consider the limit of weak Rashba interaction and focus
on those index combinations, which also enter the spin-accumulation. Doing so, we find

Pyy = 2πντ0

h̄

[
1

τ0
−

(
1 − 1

2

(
τ0

τ1

)2)]
(A.10)
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and

Py0 = 2πντ0

h̄

ey × N

v(E)

[
1

2τ0
+ 1

4

(
τ0

τ1

)2]
, (A.11)

where E = mv(E)2/2. It would be tempting to simplify the calculations using a relationship
of the type

∫
dk

(2π)2

h̄k

2m
Pαβ(k) = v(E)Pαβ.

However, it can be shown that such a relationship does not hold. Instead of using this
relationship we have to calculate the moments from equation (A.5), which yields

∫
dk

(2π)2
kPy0(k) = 2πντ0

h̄

ey × N

h̄

(
m

τ0
+ m

2

(
τ0

τ1

)2)
. (A.12)

Using the equations (A.10) and (A.12) we immediately find

Sy = 2νeτ0EN, (A.13)

in line with the diffusion equation.
At this point it is important to note the following: we cannot restrict the consideration

to the leading approximation in calculating the moments of the correlation functions, since
the leading approximation cancels. Thus, we also have to investigate small corrections with
respect to the leading approximation. Thus, the method used for the calculation also has
to be suitable to adequately take into account higher corrections with respect to the Rashba
interaction. The corrections, however, are also determined by the second term on the right-
hand side of equation (10). Thus, this contribution is also important in investigations based on
the Kubo formalism.
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